90 research outputs found

    Some remarks on unilateral matrix equations

    Full text link
    We briefly review the results of our paper hep-th/0009013: we study certain perturbative solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials.Comment: latex, 6 pages, 1 figure, talk given at the euroconference "Brane New World and Noncommutative Geometry", Villa Gualino, Torino, Italy, Oct 2-7, 200

    q-Deformed Minkowski Space based on a q-Lorentz Algebra

    Full text link
    The Hilbert space representations of a non-commutative q-deformed Minkowski space, its momenta and its Lorentz boosts are constructed. The spectrum of the diagonalizable space elements shows a lattice-like structure with accumulation points on the light-cone.Comment: 31 pages, 1 figur

    On the Euler angles for SU(N)

    Get PDF
    In this paper we reconsider the problem of the Euler parametrization for the unitary groups. After constructing the generic group element in terms of generalized angles, we compute the invariant measure on SU(N) and then we determine the full range of the parameters, using both topological and geometrical methods. In particular, we show that the given parametrization realizes the group SU(N+1)SU(N+1) as a fibration of U(N) over the complex projective space CPn\mathbb{CP}^n. This justifies the interpretation of the parameters as generalized Euler angles.Comment: 16 pages, references adde

    Unconventional Supersymmetry at the Boundary of AdS_4 Supergravity

    Get PDF
    In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of N=2, AdS_4 supergravity to N=2 supergravity on a locally AdS_3 boundary. Our boundary theory enjoys OSp(2|2) x SO(1,2) invariance and is shown to contain the D=3 super-Chern Simons OSp(2|2) theory considered in [Alvarez:2011gd] and featuring "unconventional local supersymmetry". The model constructed in that reference describes the dynamics of a spin-1/2 Dirac field in the absence of spin 3/2 gravitini and was shown to be relevant for the description of graphene, near the Dirac points, for specific spatial geometries. Our construction yields the model in [Alvarez:2011gd] with a specific prescription on the parameters. In this framework the Dirac spin-1/2 fermion originates from the radial components of the gravitini in D=4.Comment: 23 page

    The Quantum Theory of Chern-Simons Supergravity

    Get PDF
    We consider AdS3AdS_3 NN-extended Chern-Simons supergravity (\`a la Achucarro-Tonswend) and we study its gauge symmetries. We promote those gauge symmetries to a BRST symmetry and we perform its quantization by choosing suitable gauge-fixings. The resulting quantum theories have different features which we discuss in the present work. In particular, we show that a special choice of the gauge-fixing correctly reproduces the Ansatz by Alvarez, Valenzuela and Zanelli for the graphene fermion.Comment: 25 pages. Some points clarified and conclusion section extended; content of sections 3 and 4 reorganized. Version to be published on JHE

    A Calculus Based on a q-deformed Heisenberg Algebra

    Full text link
    We show how one can construct a differential calculus over an algebra where position variables x and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by x and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on this derivative differential forms and an exterior differential calculus can be constructed.Comment: latex-file, 23 page

    Structure of the Three-dimensional Quantum Euclidean Space

    Full text link
    As an example of a noncommutative space we discuss the quantum 3-dimensional Euclidean space Rq3R^3_q together with its symmetry structure in great detail. The algebraic structure and the representation theory are clarified and discrete spectra for the coordinates are found. The q-deformed Legendre functions play a special role. A completeness relation is derived for these functions.Comment: 22 pages, late

    Bethe Ansatz solution of a new class of Hubbard-type models

    Get PDF
    We define one-dimensional particles with generalized exchange statistics. The exact solution of a Hubbard-type Hamiltonian constructed with such particles is achieved using the Coordinate Bethe Ansatz. The chosen deformation of the statistics is equivalent to the presence of a magnetic field produced by the particles themselves, which is present also in a ``free gas'' of these particles.Comment: 4 pages, revtex. Essentially modified versio
    • …
    corecore